
MAHD

Applying Agile Principles to Physical Products When
Making Changes Is Difficult

B y D o r i a n S i m p s o n a n d G a r y H i n k l e

An Introduction to

Modified Agile for Hardware Development

WWW.AGILEFORHARDWARE.ORG

2

An Intro to Modified Agile for Hardware Development
Co

nt
en

ts What’s Inside this Ebook?
Letter From the Authors 3

An Introduction to MAHD 4

The Elements of the MAHD 7

Getting Started with MAHD 14

APPENDIX: Scrum Vs. MAHD 15

About Us 16

THE GOALS FOR THIS E-BOOK:

1. Provide an introduction to the Modified Agile for Hardware Development
framework.

2. Explain the key differences between hardware and software Agile methods
and why a modified approach is both desired and necessary.

3. Explore the major elements of the MAHD framework and what makes it unique
from Scrum or other SW-based Agile methods.

4. Share tips on how to get started with the MAHD framework.

3

An Intro to Modified Agile for Hardware Development

Letters from the Authors
I’ve spent my career in product development starting as an engineer
for IBM and on to management while developing both hardware and
software products for a wide range of companies. Early experiences
with phase-gate systems were frustrating and while good-intentioned,
never seemed to solve real business needs. I consistently strived to bring
customers into the development process and work with R&D teams to
stay flexible as we learned, but we didn't always have the tools and
language to effectively do this since for most of my career Agile wasn't
even an understood term. As development methods matured and Lean,
Agile and Design Thinking took hold, I was excited to see more people
embrace these principles. Today there is still a gap as we bring the
methods together for hardware development. My hope is that the MAHD
Framework will help fill this gap as we continue to make better processes
more accessible and easier to apply in all situations.

Dorian Simpson
Kingsley Institute
MAHD Evangelist

Gary Hinkle
Auxilium Inc.

MAHD Evangelist

Since I started leading engineering projects in the 1990’s, I had a natural
desire to learn about best practices and improve processes. In my quest
for wanting to find a better way, I discovered that Agile methods are the
best fit for most projects – even before Agile became popular in software
development. Unfortunately, not every decision maker around me has
understood Agile and the benefits of speed, efficiency and focus that
are so valuable to hardware-oriented businesses. While I have diligently
worked to influence other leaders to adopt Agile thinking and methods,
the lack of knowledge and experience in industry are significant barriers.
Building awareness of the MAHD Framework and ultimately establishing
MAHD as a practical standard will hopefully make it easier for
organizations to implement Agile methods and realize the tremendous
business value.

4

An Intro to Modified Agile for Hardware Development
IN

TR
O

 T
O

 M
AH

D

Is Agile Right for Hardware?

INTRODUCTION
Agile methods have taken over the software industry. Developers and leaders have discovered that
traditional waterfall processes don’t work because the upfront unknowns are usually too significant
to accurately write requirements. So a new way — Agile — was created and embraced. All good. But
what about products that have mechanical and electronic components? Can products that range
from trash cans to complex medical devices benefit from Agile’s goodness? Yes. The philosophy is
sound, but the application of Agile requires significant changes to support the needs of hardware
products where making changes are costly, partial products are difficult to test with real customers
and schedules are demanded by management. This led the need to develop the Modified Agile for
Hardware Development (MAHD) Framework — an open-source initiative to embrace the principles of
Agile while recognizing hardware’s unique needs.

Before moving on, consider the following questions and answer for yourself, “Is Agile right for your
hardware development efforts?”

1. Is it difficult to get clear product requirements before development starts?
2. Does risk accumulate throughout the development cycle as milestones are missed

and changes force rework?
3. In order to get accurate and valid feedback from customers, do customers need to

first experience your product?
4. Is market success based on innovation in several focused product areas or key

specifications?
5. Does management need clear guidance from the team on where the primary project

risks are and the plan to mitigate these risks?
6. Do individuals or teams wait long periods before their work is validated or

integrated into the product?

If you were able to answer "yes” to most of these, then the Modified Agile for Hardware
Development framework may be a good fit for your organization.

In the following sections, we’ll address each element of the MAHD Framework, why it’s different
than SW-based Agile methods and how you can get started applying Agile principles to your
development efforts.

5

An Intro to Modified Agile for Hardware Development

The MAHD Framework - An Introduction

The MAHD Framework uses the principles of Agile to develop physical products in less time, with
reduced risk and with higher customer satisfaction. Many companies have attempted applying
Agile for SW methods directly to physical products with mixed results. Teams often struggle since
current Agile steps, techniques and even language were not optimized for hardware development.
A modified Agile approach can leverage the power of Agile, while addressing the unique needs of
hardware development.

As shown in the framework on the following page, MAHD has many elements of Agile that may
be familiar to you. Developers start with user stories, a backlog is kept to prioritize tasks, and
it includes iterative development cycles. But there are also key differences. A summary of these
include:

The On-ramp
One of the basic principles of Agile is to develop very little formal documentation to keep the
team focused on the most valuable activities. This is true of Agile for hardware methods also,
but the nature of physical products requires additional upfront planning steps and often more
documentation.

Iterations and Sprints
Just as with Agile for SW methods, the MAHD Framework has at its core the concept of short
development and learning cycles. But as the model shows, the MAHD Framework includes two
levels of cycles that must be considered to accommodate the needs of hardware development.

Teams and Deciders
Another foundation of Agile is the use of small autonomous teams led by product owners and
"Scrum masters" with as little governance as possible. Again, this is similar for hardware, but
the teams, project leaders and deciders often have different roles, titles and focus.

Each of these are described in more detail below. As the MAHD Framework evolves and our
community grows, we will continue to refine the framework, add case studies and provide detailed
examples. To see the latest updates, visit: www.agileforhardware.org

For those familiar with Agile for SW methods, Appendix A has a more detailed comparison of the
MAHD Framework versus Scrum, the most commonly used Agile for SW methodology.

IN
TR

O
 T

O
 M

AH
D SIMILAR TO AGILE FOR SW METHODS, BUT WITH CRITICAL DIFFERENCES

6

An Intro to Modified Agile for Hardware Development

Th
e

M
od

ifi
ed

 A
gi

le
 fo

r H
ar

dw
ar

e
De

ve
lo

pm
en

t f
ra

m
ew

or
k

us
es

 th
e

pr
in

ci
pl

es
 o

f A
gi

le
 fo

r S
W

, b
ut

 h
as

si

gn
ifi

ca
nt

 d
iff

er
en

ce
s

to
 s

up
po

rt
 th

e
un

iq
ue

 n
ee

ds
 o

f p
hy

si
ca

l p
ro

du
ct

 d
ev

el
op

m
en

t.

M
AH

D
FR

AM
EW

O
RK

7

An Intro to Modified Agile for Hardware Development

Preparing for Agile Success with the On-ramp

ELEMENTS OF THE MAHD ON-RAMP

1. User Stories - Hardware companies
attempting to apply Agile struggle with
user stories. MAHD addresses this by
reconsidering their use when defining
physical products.

2. Product Requirements - While Agile for
software does away with requirements
(which are replaced with user stories),
requirements still have a necessary
purpose in Agile for hardware.

3. Focus Matrix - This is a new element to
Agile introduced in the MAHD Framework
and builds a necessary bridge to drive
iteration planning, Agile thinking,
innovation and development focus.

4. Iteration Plan - Similar to a SW sprint, but quite different. At two levels, MAHD Iteration
Planning creates the game plan for success while sprints provide the execution details.

5. Task Backlog - Notice that this is not the product or feature backlog. It’s different, but
related and focuses on specific team tasks that must be accomplished each sprint.

While these activities may look a lot like a waterfall-oriented process, this doesn’t mean the team
writes a detailed product requirements document, a complex Gantt chart or gets sign-off by 12
managers. It does mean that the team has thought through the project details in enough depth to
confidently get started with Agile development.

One of the major challenges that the MAHD Framework addresses for hardware is the need
to think about the whole project before getting started with execution. Designs, architecture,
dependencies, high-level iterations and even the schedule need to be considered before diving
into the work itself.

As we'll describe, the MAHD On-ramp may take a couple of weeks, but the results are well worth
the effort in setting the team up for success. While many of the elements are similar to those
found in Agile for SW, each element must be modified and we'll introduce one new element to the
MAHD Framework to support hardware development efforts. The following pages will look at each
of these in more depth.

M
AH

D:
 O

N-
RA

M
P IT MAY LOOK "UN-AGILE” BUT HARDWARE REQUIRES DEEPER UPFRONT PLANNING

8

An Intro to Modified Agile for Hardware Development

Rethinking User Stories for MAHD
HARDWARE FOLKS STRUGGLE WITH USER STORIES... AND FOR GOOD REASONS

M
AH

D:
 U

SE
R

ST
O

RI
ES

User stories are a critical starting point for Agile for SW methods since they provide the backlog
items, are groomed directly into features and sprint tasks and form the basis of the product
definition. In essence, user stories ARE the product requirements for software. For hardware we
need to rethink this. For example:

User stories go something like this...

 "As a user, I want to be to able to quickly log in so that I can access my account.”

Software developers know what to design and almost how to implement it.

Now let’s try it for hardware. Let’s assume you’re planning to
develop a new fork lift and you write this user story:

"As a user I want to be able to quickly pick up my
material so that I can save time moving inventory.”

Does a developer of hardware know what to do? Probably
not. There are too many facets of the problem to solve.
The implementation might involve the speed of the fork
lift, the accuracy of the fork attachment, the orientation of
the inventory and many other factors. Rather than specific
features or tasks, these user stories for hardware become
customer goals, rather than product requirements.

USER STORIES ARE STILL NECESSARY, BUT INSUFFICIENT
The previous example might lead you to think that user stories are
not appropriate for physical products, but this would take us too
far back to traditional waterfall methods where customer needs often take a back seat to the desire
to develop detailed product requirements.

User stories have their place in the MAHD Framework and are necessary to create a focus on the
needs and priorities of customers as well as to clarify results customers are trying to achieve.
However, since user stories for physical products cannot typically be directly translated into
features, functions or tasks, they become the starting point for developing a task backlog rather
than backlog items themselves. Once you have written MAHD User Stories, it takes several more
steps to identify the specific backlog tasks.

Next, we’ll need to consider some of the hardware-centric steps that you won’t find in Scrum or
other SW-based Agile processes — product requirements and the focus matrix.

Prioritized User Stories

9

An Intro to Modified Agile for Hardware Development

Requirements: Don’t Throw Away Those PRDs
HOW TO CONSIDER PRODUCT REQUIREMENTS IN AN AGILE WORLD

Just the term "requirements” is almost anathema to Agile purists. They know that customers
typically don’t have requirements, they only have needs and goals to accomplish that can be
described as user stories. But hardware is different. Physical products often have limitations
in components, must meet target specifications or must accommodate pre-existing interfaces.
Certainly we could describe the details through user stories, but this approach is tedious to
document and obscures the purpose of user stories.

For example, if we consider our forklift user story again,

"As a user I want to be able to quickly pick up my material so
that I can save time moving inventory.”

We could enumerate the specifics of the features and functions to
satisfy this user story with more user stories, such as,

"As a user, I want the fork lift to be able to lift materials at a
rate of three meters per second."

This is not really a user story, but more of a target specification
or perhaps part of the acceptance criteria of the user story.

To be clear, we are not advocating that MAHD framework
practitioners write detailed product requirements documents
that are associated with waterfall processes. However,
concisely describing the product vision and rough architecture
as well as listing the anticipated functional and non-functional
requirements is important as we'll see in the next step. Keep in
mind that "requirements" as defined in the on-ramp aren't rigid specifications, but really just the
ideas that act as a starting point to seed the Agile process and guide it in the right direction. Each
requirement will get refined into specific features, functions and attributes that satisfy customer
needs (the user stories) as the Agile process moves forward.

To summarize, without describing the product in more detail during upfront planning it will be
difficult to create the backlog of tasks as well as to identify areas of functionality that will be used
for iteration planning, prototyping and the focus of innovation efforts.

M
AH

D:
 R

EQ
UI

RE
M

EN
TS

Product Requirements

10

An Intro to Modified Agile for Hardware Development

Driving Agile Priorities with a Focus Matrix

The Focus Matrix is a MAHD element you won't find in any version of Agile for SW methods since
it is not necessary for SW development. However, matrix thinking has been a powerful tool for
hardware development for decades and is valuable for Agile for hardware planning for one good
reason — user stories will be satisfied by a range of product attributes, and various product
attributes will contribute toward satisfying a range of user stories.

This n-to-n relationship cannot be documented,
understood or analyzed without some form of
relational matrix. For those who have studied Total
Quality Management (TQM), you may be aware of the
House of Quality. This matrix planning tool is used
to define the relationship between customer desires
(user stories in Agile terms) and product capabilities
(features). While the TQM House of Quality is
far too complex for Agile purposes, the rationale
behind it is critically important and can help MAHD
practitioners focus on the most important tasks.

Considering the diagram on the right, the MAHD
Focus Matrix has two dimensions. The left hand side
of the matrix shows prioritized user stories. These are customer needs and goals. On the top of
the matrix are the range of prioritized features and functional requirements. The relationships
between these factors become the basis for the high-level iteration planning, prototype plans and
dependency identification.

Consider our fork lift example. The user story, ".... quickly pick up my cargo..." would appear on the
left and could be satisfied by a range of features that will be organized on the top, such as: The
speed of the lift, the lift attachments, the accuracy of steering, optical recognition to determine
the orientation of the inventory, etc. The team would then determine which attributes contribute
to satisfying the highest priority user stories and develop a plan of execution for how to prototype
the attribute and how to get customer feedback as well as identifying dependencies.

Successfully working through the Focus Matrix leads to the next MAHD On-ramp activity, iteration
planning. The result of which becomes the high-level project plan that is necessary for managing
risk, schedules, resources and tasks.

CONNECTING USER STORIES, REQUIREMENTS AND ITERATIONS

M
AH

D:
 F

O
CU

S
M

AT
RI

X

Focus Matrix

11

An Intro to Modified Agile for Hardware Development

Iteration Planning in a MAHD World

M
AH

D:
 IT

ER
AT

IO
NS CONNECTING USER STORIES, REQUIREMENTS AND ITERATIONS

As mentioned early, at the core of any Agile methodology are iterative development and learning
cycles. For Scrum-based Agile for SW, an iteration is called a sprint and lasts from 1-to-4 weeks and
the result of a sprint is working software that can be demonstrated to users. The MAHD Framework
redefines this concept and considers two levels of iterations. At the high level are "whole product
iterations." These iterations lead to larger deliverables where components of the solution are
integrated and a key result is a demonstrable prototype that can be viewed and validated with real
end customers.

As the MAHD Framework shows on page six, there are also
a series of shorter execution cycles within iterations. These
are MAHD sprints. The distinction is important for hardware-
oriented products since it is unlikely you'll be able to create a
demonstrable product with every sprint that can be put in front
of customers, but working toward prototypes at the higher level
iterations is critical to being Agile. Without customer interaction
at key phases of product development, you will, by default, be
reverting back to waterfall practices.

To develop an iteration plan, answer three questions:
1. Which areas have you identified that are high risk, but

important to get right for customers?
2. In what order should the attributes (and associated user stories) be developed to account for

dependencies?
3. How will you envision the prototype plan coming together at different levels of sophistication

in order to gain real customer insight?

Back to our fork lift example. Let's assume you decide that determining the orientation of
inventory is crucial to satisfying a high priority user story. You then plan to focus on developing
a solution and early prototype (that may or may not include optical recognition) in an early
iteration in order to validate the technology and customer acceptance. As you plan for iterations,
this level of prototype might not be possible until the second iteration, so you decide the first
iteration deliverable will include an animated video explaining and demonstrating the solution for
customers to get early feedback.

At this point of the MAHD On-ramp, you're not planning detailed sprints, but only identifying
the large work buckets, dependencies and planned prototypes that will then be broken down to
develop your MAHD Task Backlog.

Iteration Plan

12

An Intro to Modified Agile for Hardware Development

Developing a MAHD Task Backlog

M
AH

D:
 B

AC
KL

O
G IT'S TIME TO DEVELOP THE PRELIMINARY LIST OF BACKLOG TASKS

After reading about the previous four elements of the MAHD On-ramp, you may be thinking that
these activities will take a long time. However, completing the on-ramp activities should only take
one to three weeks depending on the complexity of your product. This is still a fraction of the time
that the typical product requirements phase of a waterfall project takes. While there are many
details left undefined, you'll have a very clear picture of the vision, the customer, the high level
roadmap and the overall project plan. You're now ready for the final
on-ramp activity - developing the MAHD Task Backlog.

As mentioned before, the backlog in Agile for SW methods is a
combination of prioritized user stories, engineering tasks and
features. For the MAHD Framework, the backlog is similar, but has
distinct differences. A user story will not typically be a specific backlog
item. A feature may be listed as a task, but generally the MAHD Task
Backlog is a prioritized list of engineering and design tasks that are all
directly related to user stories and product attributes.

To refer back to our fork lift example, the backlog might include:
1. Investigate open-source optical recognition solutions

appropriate for fork lift applications.
2. Design new gearing to increase fork lift speed and accuracy.
3. Design new fork lift attachments to accommodate the largest

number of material configuations.
4. Etc.

As the backlog is groomed (meaning clarified, estimated and the addition of acceptance criteria),
you'll likely determine that many high-level tasks, such as the third one, "Design new fork lift
attachments..." will need to be broken down further into tasks that can be accomplished in a single
sprint. You could also make this task an "epic" and add tasks and sub-tasks such as:
• Identify the most common pallet configurations, dimensions and variations
• Identify Amazon's inventory sizes and configuations (assuming Amazon is a target customer.)
• Etc.

Once your MAHD Task Backlog is ready (and it's never complete as you learn and add items), you can
then begin planning your first sprint and you're off and running with Agile.

Task Backlog

13

An Intro to Modified Agile for Hardware Development

The Daily Grind: Planning and Executing Sprints
When most people think of "Agile," they imagine short development cycles where small teams
commit to and deliver a set of features selected from a backlog. This provides the foundation
of Agile methodology and executing MAHD sprints is similar. The only difference is that the
development teams are selecting from backlog tasks that often look quite different than software
features. Tasks may include specific features, but they are more likely to be technical investigations,
design work, prototype building, integration of components, selection of a vendor, documentation
for BOMs, etc. These tasks are aligned with the activities necessary for physical, mechanical and/or
electronic designs and combine to build features and satisfy user stories.

M
AH

D:
 S

PR
IN

T
PL

AN
S

When planning for sprints, MAHD cross-functional teams will review the task backlog, clarify tasks
and determine the number of tasks they can commit to during a two-to-eight week sprint. As with
any Agile process, the governance process is based on regular meetings where teams share their
progress, groom tasks for the next sprint and validate their work. Teams may also choose to hold
daily "stand-up meetings" typical of Agile SW practices or opt for bi-weekly or weekly meetings
since progress for activities related to hardware are often not as granular as software tasks.

During sprint planning the team will also have an eye to the whole product iteration. Iterations are
important to bring the components together and deliver prototypes that can be used for validation
with customers. As sprints are completed, progress is tracked and the team will continute to
improve their estimation skills and start showing real output months ahead of waterfall processes.

14

An Intro to Modified Agile for Hardware Development

With the right support, resources and coaching, these activities and tools will
naturally lead to better NPD environments and long term market success.

Getting Started with MAHD

1. Determine the fit - Start with a clear understanding of your project goals to determine if
Agile is right for you.

2. Ensure you have top-down support - If senior management does not understand or
support Agile principles, it will cause a great deal of frustration that often leads your
team back to waterfall techniques.

3. Clarify roles and deciders - You likely have titles like product managers, project mana-
gers and other roles. Determine if job definitions and responsibilities need to change to
support Agile principles.

4. Start slow and expect early hiccups - If you've ever instituted a new process such as six
sigma or phase-gate, you know it can take time and energy. Implementing Agile does take
a couple of projects to become proficient. Stick with it.

5. Don't skimp on the on-ramp - Hardware requires up front planning to develop a clear
vision and iteration plan before diving into sprint planning.

6. Don't add tools too quickly - Agile project management tools, such as Jira, can be a big
aid, but learn Agile methods first and then add tools to improve efficiencies.

7. Identify and train champions - It takes leaders who have embraced Agile and are skilled
in its usage. Identify a small group of evangelists who can lead the team.

8. Don't skip customer interactions - Agile requires direct feedback from customers. Many
teams attempt to treat Agile as a pure development process, but to leverage its power,
Agile must become a product success process.

GE
TT

IN
G

M
AH

D We know we've just touched the surface to fully describe the details of the MAHD Framework. If
you'd like to get started applying Agile principles to your product development efforts, consider
the following eight tips:

15

An Intro to Modified Agile for Hardware Development
HW

 V
ER

SU
S

SW
 The MAHD Difference

Can’t We Just Use Scrum?

Scrum is the most commonly used Agile methodology for SW-based projects so
we’ll use this as the basis of comparison for each element of Agile vs. MAHD. The
following table summarizes the Agile element and what's different for hardware.

Agile Element Scrum for SW MAHD

User Stories Can be translated directly into
tasks and backlog items.

Provide customer requirements,
but typically cannot be

translated directly into tasks.

Backlog
List of user stories, technical
stories and epics. Constantly

updated and prioritized.

List of tasks derived from MAHD
On-ramp planning. Constantly

updated and prioritized.

Iterations
1-4 week sprints, each with code
releases that can be demonstra-

ted and tested.

2-8 week sprints grouped into
whole product iterations to test
key features and specifications.

Requirements Defined by user stories. Defined by features, design
targets and user stories.

Prototypes Working software Demonstrable physical prototype

Releases
Working software that can
be tested with direct user

interaction.

Working prototypes that show
demonstrable output for

technical and user validation.

Deciders Typically a SW-oriented product
owner.

Typically a business-oriented
product manager.

Process Owner Scrum Master Project Manager

Team Orientation SW Teams Cross-functional Teams

Focus Matrix Not used
A crucial planning exercise

to determine iterations,
dependencies and prototypes.

How Can We Help?

About Gary Hinkle

Electronics, mechanical and software
engineering are all part of Gary Hinkle’s
background, working in design, manage-
ment and executive leadership of com-
munication, industrial, telemetry, audio,
avionics, computers, test & measurement,
among other industries. Today, he’s prin-
cipal consultant at Auxilium, a company
he founded to help engineering-oriented
businesses increase productivity.

Contact Gary

W: www.Auxilium-inc.com
P: 971-222-6234
E: gary@auxilium-inc.com

About Dorian Simpson

Dorian Simpson is an innovation and
product development consultant,
trainer, speaker and author of The Savvy
Corporate Innovator. Companies he’s
worked with include ABB, Tyco, Owens
Corning, Technicolor, FEI, VTech and
Freightliner. Before consulting, Dorian
held positions at Motorola and AT&T in
product management, sales, marketing,
business development, and engineering.

Contact Dorian
W: www.KingsleyInst.com
P: 971-235-4905
E: dorian@kingsleyinst.com

(c) 2018 Kingsley Institute and Auxilium-Inc - All Rights Reserved

The MAHD framework was developed by Gary Hinkle and Dorian Simpson to address the needs of
hardware development. Having both been involved with product development for years, we have seen
the challenges of waterfall-based NPD processes and how Agile can help. However, working with teams
trying to implement Agile processes designed for SW development, we were determined to find a better
way without throwing out the foundation that Agile methods provide.

The MAHD framework is an open-source process, available for all to use, build on and improve. We look
forward to hearing from you and your experiences with Agile, waterfall and other processes.

To learn more, get involved, or just join our community for discussion, visit:

www.AgileforHardware.org

AB
O

UT
 U

S

